Finite Fields
Theorem (Existence and Uniqueness of Finite Fields).
Every finite field has order $p^n$ for some prime $p$ and positive integer $n$.
Conversely, for any such $p$ and $n$:
- There exists a finite field of order $p^n$.
- Any two finite fields of order $p^n$ are isomorphic.
- Inside a fixed algebraic closure $\overline{\mathbb{F}_p}$, there is a unique subfield of order $p^n$.
Proof (Sketch).
\[|\mathbb{F}| = p^n\]
Let $\mathbb{F}$ be a finite field. Then $\mathbb{F}$ has positive characteristic $p$ for some prime $p$. The prime field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ embeds into $\mathbb{F}$, so we can view $\mathbb{F}$ as an $\mathbb{F}_p$-vector space. Let $n = [\mathbb{F} : \mathbb{F}_p]$. Then:Existence:
\[\mathbb{F}_{p^n} := \left\{ \alpha \in \overline{\mathbb{F}_p} : \alpha^{p^n} = \alpha \right\}\]
To construct a field of order $p^n$, fix an algebraic closure $\overline{\mathbb{F}_p}$ and define:This set forms a subfield with $p^n$ elements.
Uniqueness:
Suppose $\mathbb{F}$ is a field with $|\mathbb{F}| = p^n$. Then:\[\mathbb{F} \subseteq \left\{ \alpha \in \overline{\mathbb{F}_p} : \alpha^{p^n} = \alpha \right\} = \mathbb{F}_{p^n}\]
- $\mathbb{F}^\times$ is a cyclic group of order $p^n - 1$.
- Every element satisfies $\alpha^{p^n} = \alpha$, so:
Since both have $p^n$ elements, equality holds. Thus, the subfield of $\overline{\mathbb{F}_p}$ defined above is the unique field of order $p^n$ inside it.
Lemma.
Let $\mathbb{F}_{p^n}$ be a finite field, and $\alpha\in\mathbb{F}_{p^n}$ be a generator to the cyclic group ${\mathbb{F}_{p^n}}^\times$.
Then, $\mathbb{F}_{p^n} = \mathbb{F}_{p}(\alpha)$ is a simple extension over $\mathbb{F}_p$.
Proof.
We have $0\cup \langle \alpha\rangle = {0, 1,\alpha,\ldots,\alpha^{p^n-1}}\subset \mathbb{F}_p(\alpha)$. Therefore, we know that $|\mathbb{F}_{p}(\alpha)| \geq p^n$. Since $\mathbb{F}_p(\alpha)\subset\mathbb{F}_{p^n}$ where $\mathbb{F}_{p^n}$ has $p^n$ elements, we know that $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^n}$.
Lemma.
$\mathbb{F}_{p^m}$ can be embedded into $\mathbb{F}_{p^n}$ if and only if $m \mid n$.
Proof.
\[\mathbb{F}_p \subset \mathbb{F}_{p^m} \subset \mathbb{F}_{p^n}\]
Suppose $\mathbb{F}_{p^m} \subset \mathbb{F}_{p^n}$. Then we have a tower of field extensions:By the tower law:
\[[\mathbb{F}_{p^n} : \mathbb{F}_p] = [\mathbb{F}_{p^n} : \mathbb{F}_{p^m}] \cdot [\mathbb{F}_{p^m} : \mathbb{F}_p]\]Since $[\mathbb{F}_{p^n} : \mathbb{F}_p] = n$ and $[\mathbb{F}_{p^m} : \mathbb{F}_p] = m$, this shows $m \mid n$.
Conversely, assume $m \mid n$ and write $n = mk$. We want to show that $\mathbb{F}_{p^m} \subset \mathbb{F}_{p^n}$ as subfields of $\overline{\mathbb{F}_p}$.
Recall that:
\[\mathbb{F}_{p^m} = \{ \alpha \in \overline{\mathbb{F}_p} : \alpha^{p^m} = \alpha \}, \quad \mathbb{F}_{p^n} = \{ \alpha \in \overline{\mathbb{F}_p} : \alpha^{p^n} = \alpha \}\]We can show that
\[x^{p^n}-x = x^{p^{mk}}-x = (x^{p^m}-x)(x^{p^{m(k-1)}}+x^{p^{m(k-2)}}+\cdots+1)\]Therefore, $\alpha^{p^m} = \alpha$ implies $\alpha^{p^n} = \alpha$. This shows that $\mathbb{F}_{p^m}\subset\mathbb{F}_{p^n}$.
Lemma (Irreducible Polynomials over Finite Field).
Let $f(x) \in \mathbb{F}_p[x]$ be irreducible of degree $d$. Then:
- \[f(x) \mid x^{p^d} - x\]
- \[f(x) \mid x^{p^n} - x \quad \text{if and only if} \quad d \mid n\]
Proof.
Let $\alpha$ be a root of $f(x)$ in some algebraic closure $\overline{\mathbb{F}_p}$. Since $f(x)$ is irreducible over $\mathbb{F}_p$ and has degree $d$, $f(x)$ is a scalar multiple of the minimal polynomial of $\alpha$ over $\mathbb{F}_p$, and the field $\mathbb{F}_p(\alpha)$ is a degree $d$ extension of $\mathbb{F}_p$.Hence:
\[\mathbb{F}_p(\alpha) = \mathbb{F}_{p^d} \quad \implies \quad \alpha^{p^d} = \alpha\]So $\alpha$ is a root of $x^{p^d} - x$. By the property of the minimal polynomial, we have $f(x)$ divides $x^{p^d} - x$.
Now for the second part:
If $f(x) \mid x^{p^n} - x$, then $\alpha \in \mathbb{F}_{p^n}$. We have a tower of extension $\mathbb{F}_p\subset\mathbb{F}_p(\alpha)\subset\mathbb{F}_{p^n}$, so $d = [\mathbb{F}_p(\alpha) : \mathbb{F}_p] \mid n$.
If $d \mid n$, then $\mathbb{F}_{p^d} \subset \mathbb{F}_{p^n}$ by the previous lemma. Thus, we have $\alpha\in\mathbb{F}_{p^n}$ with $\alpha$ satisfying $x^{p^n}-x$. Since $f(x)$ is a scalar multiple of the minimal polynomial of $\alpha$, we have $f(x)\mid x^{p^n}-x$ by the property of the minimal polynomial.
Theorem (Counting Monic Irreducible Polynomials over Finite Fields).
Let $\mathcal{P}_d$ be the set of monic irreducible polynomials of degree $d$ in $\mathbb{F}_p[x]$. Then:
As a consequence:
\[p^n = \sum_{d \mid n} d \cdot |\mathcal{P}_d|.\]Applying Möbius inversion, we get:
\[|\mathcal{P}_n| = \frac{1}{n} \sum_{d \mid n} \mu(n/d) p^d.\]where $\mu$ is the Möbius function
Proof.
\[x^{p^n} - x = \prod_{\alpha \in \mathbb{F}_{p^n}} (x - \alpha)\]
The polynomial $x^{p^n} - x$ splits completely over $\mathbb{F}_{p^n}$ asand is square-free. Hence it factors into distinct irreducible polynomials over $\mathbb{F}_p$.
Let $f(x) \in \mathbb{F}_p[x]$ be an irreducible factor of $x^{p^n} - x$. Then the previous lemma implies that $\deg f(x) \mid n$.
Conversely, by the previous lemma, every monic irreducible polynomial $f(x)$ of degree $d$ with $d \mid n$ divides $x^{p^n} - x$. Hence:
\[x^{p^n} - x = \prod_{d \mid n} \prod_{f \in \mathcal{P}_d} f(x)\]where each irreducible factor $f(x)$ appears exactly once. Taking degrees on both sides:
\[\deg(x^{p^n} - x) = p^n = \sum_{d \mid n} d \cdot |\mathcal{P}_d|\]Applying Möbius inversion to this identity yields the formula:
\[|\mathcal{P}_n| = \frac{1}{n} \sum_{d \mid n} \mu(n/d) p^d\]